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Abstract

Recently, a range of information-processing circuits
have been implemented in DNA by using strand dis-
placement as their main computational mechanism.
Examples include digital logic circuits and catalytic
signal amplification circuits that function as efficient
molecular detectors. As new paradigms for DNA com-
putation emerge, the development of corresponding
languages and tools for these paradigms will help to
facilitate the design of DNA circuits and their auto-
matic compilation to nucleotide sequences. We present
a programming language for designing and simulat-
ing DNA circuits in which strand displacement is the
main computational mechanism. The language in-
cludes basic elements of sequence domains, toeholds
and branch migration, and assumes that strands do
not possess any secondary structure. The language is
used to model and simulate a variety of circuits, in-
cluding an entropy-driven catalytic gate, a simple gate
motif for synthesizing large-scale circuits and a scheme
for implementing an arbitrary system of chemical reac-
tions. The language is a first step towards the design
of modelling and simulation tools for DNA strand dis-
placement, which complements the emergence of novel
implementation strategies for DNA computing.

1 Introduction

Nucleic acids have a number of desirable properties
for engineering artificial biochemical circuits. Their
sequences can be precisely controlled in order to en-
code distinct signals while avoiding cross-talk between
molecules, and Watson-Crick base-pairing can be used
to engineer interactions between specific molecules
at well-defined rates. Previous efforts in design-
ing biochemical circuits with DNA have tended to
make use of additional restriction enzymes (Benen-
son et al., 2001, 2003), or structural features such
as hairpins within the molecules to perform compu-
tation (Sakamoto et al., 2000; Benenson et al., 2004;

Yin et al., 2008). While this allows the implementa-
tion of somewhat ingenious molecular devices (Yurke
et al., 2000; Venkataraman et al., 2007), simpler de-
signs have recently been proposed for the construction
of large-scale, modular circuits. In particular, a range
of information-processing circuits have recently been
implemented in DNA by using strand displacement as
the main chemical process to perform computation.
Examples include various digital logic circuits (Seelig
et al., 2006) together with catalytic signal amplifica-
tion circuits that function as efficient molecular de-
tectors (Zhang et al., 2007). The use of DNA strand
displacement to perform computation enables the con-
struction of simple, fast, modular composable and ro-
bust circuits, as demonstrated in Zhang et al. (2007).

A range of modelling approaches have also been de-
veloped for DNA computation (Paun et al., 1998).
One example is Sticker Systems (Kari et al., 1998;
Paun & Rozenberg, 1998), which model the sticking
together of DNA strands. Such operations can ef-
fectively model Adleman’s experiment, in which DNA
was used to compute a Hamiltonian path in a graph
(Adleman, 1994). Other examples include Watson-
Crick Automata, which are the automata counterpart
to sticker systems, Insertion-Deletion systems, which
contain operations for inserting and deleting DNA se-
quences, and Splicing Systems, which can be physi-
cally implemented with the help of restriction enzymes.
A more recent review of modelling approaches is pre-
sented in Amos (2005), together with their correspond-
ing physical implementations.

So far, however, DNA strand displacement opera-
tions have only been represented either by informal no-
tations, or by manually constructing a corresponding
set of chemical reactions. Here we investigate whether
strand displacement can be used as the basis for a
DNA programming language. The execution rules of
the language correspond to interactions between phys-
ical DNA strands, while the kinetics of these rules cor-
respond to the underlying kinetics of strand displace-
ment.

We first present an overview of a programming lan-
guage for DNA strand displacement, which includes
basic elements of sequence domains, toeholds and
branch migration. We also present an algorithm for
automatically generating a set of chemical reactions
from a given set of DNA molecules. We then use
our language to model various practical and theoreti-
cal systems, including an entropy-driven catalytic gate
(Zhang et al., 2007), a simple gate motif for synthesiz-
ing large-scale circuits (Qian & Winfree, 2008) and a
scheme for implementing an arbitrary system of chem-
ical reactions (Soloveichik et al., 2008). More gener-
ally, the algorithm allows a given circuit design to be
repeatedly modified and simulated in an iterative cy-
cle, until it exhibits the desired behaviour. Inspired by
the work of Yin et al. (2008), in the long term we en-
visage a language that can be used to program a range
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of DNA molecules, simulate their behaviour, and then
automatically generate the corresponding nucleic acid
sequences, ready for synthesis.

2 Results

2.1 A language for DNA strand dis-
placement

Simple examples

We present a language for DNA strand displacement
by means of simple examples, together with their cor-
responding graphical representation. The design of the
language is motivated by the assumptions outlined in
Zhang et al. (2007). Examples of DNA molecules are
presented below, where parallel composition (|) de-
notes the presence of multiple molecules next to each
other.

21 2

<1 2>

1 2 1

[1 2]

21

[1 2]:[3 4]

43 21

[1 2]:3:[4 5]|1:2 | | |

43 5

The molecule 1:2 represents a lower strand of DNA,
where the 3’ end of the strand is assumed to be on
the left, as indicated by an arrowhead in the graphical
representation. The strand is divided into domains,
which correspond to short DNA sequences. The do-
mains are represented by numbers 1 and 2, where each
number represents a distinct domain. The DNA se-
quences of distinct domains are assumed to be suffi-
ciently different that they do not interfere with each
other. The red domain 1 represents a toehold domain,
while the black domain 2 represents an ordinary speci-
ficity domain. The colour is merely an annotation,
since the length of the domain sequence is sufficient to
determine its type. Toehold domains are very short
sequences, generally between 4 and 10 nucleotides in
length, that enable one DNA strand to bind to an-
other. Since the sequence is short, the two strands will
quickly unbind from each other in absence of further
interaction along neighbouring domains. The molecule
<1 2> represents an upper strand of DNA, where the
3’ end of the strand is assumed to be on the right. The
strand consists of two domains that are complementary
to domains 1 and 2, where two domains are comple-
mentary if their respective sequences are Watson-Crick
complementary. We denote 1:2 as a lower strand and
<1 2> as an upper strand in order to emphasise the
complementarity between strands. Two complemen-
tary strands 1:2 and <1 2> can hybridize along their
complementary domains to form a double-stranded
molecule [1 2]. A molecule can also consist of multi-
ple upper strands bound to a single lower strand. For
example, [1 2]:[3 4] consists of upper strands <1 2>
and <3 4> bound to a single lower strand 1:2:3:4.
There can also be gaps between bound upper strands,

as in the molecule [1 2]:3:[4 5], where domain 3 of
the lower strand is unoccupied.

Bound upper strands can also overhang to the left
or right, as shown below.

<1>[2 3]<4>

32

|

1 4

32

1 4

76

5 8

<1>[2 3]<4>:<5>[6 7]<8>|

1

2

[1]<2>:[3]

3

The molecule <1>[2 3]<4> consists of an upper strand
<1 2 3 4> bound to a lower strand 2:3. The region
[2 3] of the molecule is double-stranded, while <1>
and <4> represent single-stranded regions overhanging
to the left and right. The molecule [1]<2>:[3] con-
sists of an upper strand <1 2> bound to a molecule
1:[3], where the single-stranded region <2> is over-
hanging the double-stranded region [3]. Multiple
overhanging strands can be bound simultaneously
along different regions, as in the case of the molecule
<1>[2 3]<4>:<5>[6 7]<8>, which represents two up-
per strands, <1 2 3 4> and <5 6 7 8>, bound along
regions [2 3] and [6 7], respectively. Notice how the
colon is used to separate the two bound upper strands.
In general, the DNA molecules are assumed to have no
additional secondary structure. This can be achieved
by careful selection of appropriate DNA sequences, as
discussed for example in Zhang et al. (2007).

We give examples of the main types of interactions
that are possible between DNA molecules in the strand
displacement language. The simplest example is of one
strand binding to another, as shown below.

1 2

<1 2> | 1:[3]

1 1

2

[1]<2>:[3]

+1-13 3

An upper strand <1 2> can bind to a molecule 1:[3]
on toehold domain 1, and the bound strand can sub-
sequently unbind. The rates of binding and unbinding
are determined by the sequence of the toehold domain
1 and are given by ρ1 and ρ−1, which can be abbrevi-
ated to +1 and −1, respectively.

A given strand can also be displaced by another
strand as a result of binding, as shown below.

21 2

<1 2> | 1:[2]<3>

1

3

1

[1]<2>:[2]<3> [1 2] | <2 3>

+1-12 1

2 3

2 32

Although toehold domains are short enough to un-
bind rapidly in the absence of additional specificity do-
mains, they are still long enough to greatly accelerate
the initiation of strand displacement when additional
specificity domains are present. In the above example,
when the strand <1 2> becomes bound it initiates the
displacement of its neighbouring strand by a process
of branch migration. Although this process involves a
random walk of multiple elementary steps, these are
relatively fast at experimental concentrations and can
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be omitted (Zhang et al., 2007). This was previously
demonstrated by Green & Tibbetts (1981) and Yurke
& Mills Jr (2003), who showed that strand displace-
ment can be modelled as a second order process over
a wide range of experimental conditions. This means
that the unbinding reaction on toehold domain 1 can
be effectively ignored and the two consecutive reac-
tions can be approximated by a single displacement
reaction with rate ρ1 as follows.

21 2

<1 2> | 1:[2]<3>

1

3

1

[1 2] | <2 3>

+12 32

Once bound, a given strand can also cause the toe-
hold domain of a neighbouring strand to unbind, as
shown below.

1 2

<1 2> | 

1:[2 3]

1

[1]<2>:[2 3] [1 2]:<2>[3]

+1-12 1

2

2

32

3 3 1 2 3º
2

-3+3 1 2 3

<2 3> |

[1 2]:3 

A strand <1 2> can bind to a molecule 1:[2 3] on toe-
hold domain 1, and then displace the bound domain 2
of its neighbouring strand by branch migration. This
can result in the unbinding of the neighbouring strand
on toehold domain 3. The reverse sequence of reac-
tions can also occur. Since branch migration is very
fast compared to binding and unbinding reactions, the
two molecules [1]<2>:[2 3] and [1 2]:<2>[3] are
considered equivalent. This is because the molecule
will be constantly migrating back and forth between
these two states, such that the states become indistin-
guishable from the point of view of the slower binding
and unbinding reactions.

The strand displacement language also allows pa-
rameterised modules to be defined, as shown below.

A B C

Cascade(A,B,C,D)

D

Cascade(A,B,C,D) = Z * A:[B C]<D>

Z*

A module is represented as a collection of one or
more molecules enclosed in a box. In this exam-
ple the module consists of a population of molecules
Z* A:[B C]<D>, where Z* denotes the number of
copies of the molecule. The name of the module
Cascade(A,B,C,D) is written along the bottom, where
A,B,C,D represent parameters of the module. The pa-
rameters allow similar molecules to be constructed us-
ing different domains, as shown below.

2 3 4

5

Z*

Z* 2:[3 4]<5>

4 5 6

7

Z* 6 7 8

9

Z*

Z* 4:[5 6]<7> Z* 6:[7 8]<9>| |

The molecules represent the result of execut-
ing three separate instances of the module
Cascade(A,B,C,D) with three different sets of
parameters: Cascade(2,3,4,5), Cascade(4,5,6,7)
and Cascade(5,6,7,8). In this example, a strand
<1 2 3> will be able to displace a strand <3 4 5>
from the first stage of the cascade, which will in turn
displace a strand <5 6 7> from the second stage,
which will then displace a strand <7 8 9> from the
third and final stage. In general, modules allow parts
of a program to be re-used with different parameters,
reducing code repetition and enabling more compact
programs.

The language also allows local domains to be defined
for a particular collection of molecules, as shown below.

A B C

D

Z*

new (C,D)( Z* A:[B C]<D> | Z* C:[D E]<F> )

C D E

F

Z*

(C,D)

Local domains are represented using the new keyword.
Graphically, they are represented by placing a dotted
line around the molecules, with the local domains in
the top left corner. In this example the domains (C,D)
are local to molecules A:[B C]<D> and C:[D E]<F>.
This guarantees that there can be no interference on
domains C and D from any other molecules in the sys-
tem, even if those molecules use the same names C or
D. In practice, this is enforced by renaming the local
domains C, D in the event of any clashes. The renaming
is done prior to executing a given system of molecules.
Local domains are particularly useful when building
large programs from smaller building blocks, since they
avoid having to manually check all the domains in a
given program to ensure that there are no unintended
clashes.

Main syntax and execution rules

In general there are many possible configurations for
individual DNA molecules, and many ways in which
these molecules can interact with each other over time.
We capture the set of possible molecular configura-
tions and interactions by defining precise syntax and
execution rules for the DNA strand displacement lan-
guage. In this section we present the main rules to-
gether with their corresponding graphical representa-
tion. The complete set of rules is provided in Section 3.

The syntax of the strand displacement language is
presented in Figure 1, in terms of DNA molecules D,
molecule segments G and DNA sequences S, L, R. A
sequence S consists of a series of domains O1...OK,
where a domain O can be a specificity domain N or a
toehold domain N^c with degree of matching c. N is a
name or number representing a unique DNA sequence,
where the sequence of toehold domains is assumed to
be between 4 and 10 nucleotides in length. The degree
of matching c allows different binding and unbinding
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N^c

N
c

Lower strand with toehold N
c

S

RL

<L>[S]<R>

Double strand with sequence S 

and overhangs L, R

S

G1 G2 ... GK

G1:G2:...:GK

<S>

Upper strand with sequence 

complementary to S

Molecule with segments G1,...,GK

D1 D2 ... DK

D1 | D2 | ... | DK

Parallel molecules D1,...,DK

O1 O2 ... OK

O1 O2 ... OK

Sequence of domains O1,...,OK

A. Syntax of DNA molecules D B. Syntax of DNA segments G

C. Syntax of DNA sequences S,L,R

new (N1,...,NK) D 

Molecules D with private domains N1,...,NK

(N1,...,NK)
D

Figure 1: Syntax of the strand displacement language,
in terms of DNA molecules D, molecule segments G and
DNA sequences S, L, R. For each construct, the graph-
ical representation at the top is equivalent to the pro-
gram code at the bottom. Sequences S, L, R are com-
posed of a series of domains O1...OK, where a domain
O can be a specificity domain N or a toehold domain
N^c with degree of matching c. We assume that all
toeholds in upper strands have degree of matching 1.

rates to be implemented for different molecules that in-
teract on the same toehold domain. The degree c is as-
sumed to be greater than 0 and less than or equal to 1,
where a sequence N^1 with degree 1 is identical to the
sequence N. Degrees of matching 1 can usually be omit-
ted, where N^1 is abbreviated to N. Small mismatches
in sequence complementarity can significantly affect
toehold binding and unbinding rates, while still avoid-
ing interference with other toehold domains. Thus, the
degree of matching can be used to modify the binding
and unbinding rates of a given toehold. For exam-
ple, a toehold <N^1> will interact with toeholds N^c1
and N^c2 at different rates depending on the degrees
of matching c1 and c2. If c1 < c2 < 1 then toe-
hold <N^1> will have a higher binding rate and a lower
unbinding rate when interacting with N^c2, compared
with N^c1. To simplify the syntax, we assume that all
toeholds in upper strands have degree of matching 1.
This avoids having to record the degree of matching
for both upper and lower strands in a double-stranded
molecule.

A molecule D can be an upper strand <S> with a
sequence complementary to S, or a molecule with seg-
ments G1:...:GK. A segment G can be a lower strand
with toehold domain N^c, or a double strand [S] with
upper strands <L> and <R> overhanging to the left and
right, respectively, written <L>[S]<R>. The syntax en-
sures that specificity domains on the lower strands are
always occupied by an upper strand, such that only
toehold domains on the lower strands can be unoccu-
pied. This ensures that two single-stranded molecules

S2

N RL N
c

G2G1 N
c

L R

G2G1

S1

L1 S2

R1

L2 R2

R2L2S2S1

L1 R1

S2

+N×c-N/c

1. Toehold binding and unbinding

S2S1

L1 R1S1 R2

R1L1S2S1

L2 R2

S1

2. Strand displacement to the right

L2

3. Strand displacement to the left

S2S1

L1 S2

R1

L2 R2

ºS3 S2S1

L1 S2

L2

R2

S3

R1

4. Branch migration

<L1>[S1]<S2 R1>:<L2>[S2]<R2> <L1>[S1 S2]<R1> | <L2 S2 R2>

<L1>[S1]<R1>:<L2 S1>[S2]<R2> <L2>[S1 S2]<R2> | <L1 S1 R1> 

<L1>[S1]<S2 R1>:<L2>[S2 S3]<R2> <L1>[S1 S2]<R1>:<L2 S2>[S3]<R2>

<L N R> | G1:N^c:G2 G1:<L>[N^c]<R>:G2

Figure 2: Reduction and branch migration rules of
the strand displacement language. For each rule, the
graphical representation at the top is equivalent to the
program code at the bottom.

can only interact with each other via complementary
toehold domains, as described by Zhang et al. (2007).

Multiple DNA molecules can be present in par-
allel, written D1|...|DK. We abbreviate K parallel
copies of the same molecule D to K*D . Domains
N1,..,NK can also be restricted to molecules D, written
new (N1,...,NK) D. This represents the assumption
that the domains are not used by any other molecules
apart from D. We also allow module definitions of the
form X(m)=D, where m are the module parameters and
X(n) represents an instance of the module D with pa-
rameters m replaced by n. We assume a fixed set of
module definitions, which are declared at the start of
the program.

The main reduction and equivalence rules of the lan-
guage are presented in Figure 2. The reduction rules
are of the form D −→r D’, which means that D can
reduce to D’ by a reaction with rate r. We write
D r′←→r D’ as an abbreviation for the two reductions
D −→r D’ and D’ −→r′ D. We also write D −→ D’
as an abbreviation for a reduction that is effectively
immediate.

The first reduction rule models toehold binding and
unbinding. Each toehold domain N is associated with
corresponding binding and unbinding rates given by
ρN and ρ−N , which can be abbreviated to +N and
-N, respectively. We multiply the binding rate by
the degree of matching c of domain N and we divide
the unbinding rate by this degree, since a low degree
of matching between toehold sequences will result in
slower binding and faster unbinding. In practice, the
degree of matching c of a toehold N^c can be deter-
mined by measuring the binding rate of N^c to <N>
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and dividing by the binding rate of N^1 to <N>. The
next two rules model a strand being displaced from
a molecule to the right and left. The reductions are
immediate, since branch migration is considered to
be much faster than toehold binding or unbinding.
The fourth rule models equivalence of molecules up
to branch migration. Since a given DNA molecule can
rapidly sample its space of possible configurations by
branch migration, the different configurations are con-
sidered to represent the same molecule.

We can use the reduction rules of the language to
generate the set of all possible reactions for a given
set of DNA molecules. Essentially, this is achieved
by repeated application of the reduction rules to the
molecules, where each application of a rule corresponds
to a reaction. The rules are repeatedly applied until
no new reactions are generated. The algorithm is pre-
sented in more detail in Section 3. The strand displace-
ment language can be used to construct an initial set
of DNA molecules, and then to automatically deter-
mine the set of all possible interactions between these
molecules over time, together with their correspond-
ing interaction rates. We illustrate the application of
the strand displacement language to three main cases
studies.

2.2 Case study: entropy-driven cat-
alytic gate

This case study uses the strand displacement lan-
guage to implement an entropy-driven catalytic gate
developed by Zhang et al. (2007). The gate enables
key functions of signal amplification and circuit gain,
which are essential for implementing large cascaded
circuits in DNA. According to Zhang et al. (2007), the
gate is substantially simpler, faster, better understood
and more modular than previous DNA hybridization
designs.

Figure 3 presents an implementation of the entropy-
driven catalytic gate of Zhang et al. (2007) in the
strand displacement language. The gate consists of
initial concentrations of fuel, catalyst and substrate
molecules. The full sets of species and reactions for the
gate are presented in Figure 4. These were compiled
from the molecules of Figure 3 using the algorithm de-
scribed in Section 3. From the compiled reactions we
observe that Catalyst C binds to Substrate S, causing
the release of Signal SB and Output OB in the pres-
ence of Fuel F. The same catalyst can be re-used to
drive the release of multiple signal and output strands,
provided sufficient substrate and fuel molecules are
present. Thus, the compiled reactions serve as an ini-
tial validation of the catalytic gate design.

Note that the compiled reactions of Figure 4 differ
from the manually-defined reactions of Zhang et al.
(2007). A comparison between the two sets of reactions
is given in Figure 5. A non-catalytic reaction S+F k0−→
OB + SB +W was also given in Zhang et al. (2007),

542

1 6

33 42 4 5

Catalytic

PS*PF* PC*

Catalytic =
( PF * <2 3 4> | PC * <4 5> | PS * <1>[2]:<6>[3 4]:5 )

Figure 3: An implementation of the entropy-driven
catalytic gate of Zhang et al. (2007) in the strand
displacement language. The gate consists of Fuel
<2 3 4> Catalyst <4 5> and Substrate molecules
<1>[2]:<6>[3 4]:5, at initial concentrations given by
PF, PC and PS, respectively.

+3

-3

+3

42

1 6 4

3 42

1 6 4

542

1 6

42

1 2

42

42

5

5

3 5

33

5

5

3

3

4

3 42 3 46

21

4

42

1 2

53

4

Substrate S

Fuel F

Intermediate I1

Waste W

Signal SB

Output OB

4 5

Catalyst C

Intermediate I4

Intermediate I5

3 42

1

5

Intermediate I3

º

+5

-5

+5

-5

º

C = <4 5> S = <1>[2]:<6>[3 4]:5
SB = <6 3 4> I1 = <1>[2]:<6>[3]<4>:[4 5]
F = <2 3 4> I3 = <1>[2]:3:[4 5]
OB = <1 2> I4 = <1>[2]:<2>[3]<4>:[4 5]
W = [2 3 4 ]:5 I5 = [2 3 4]:<4>[5]

S + C {rm5}<->{r5} I1 I1 {r3}<->{rm3} I3 + SB
I3 + F ->{r3} I4 I4 -> I5 + OB
I5 {r5}<->{rm5} C + W

Figure 4: Species and reactions for the entropy-driven
catalytic gate of Zhang et al. (2007). Starting from
the molecules of Figure 3, the full set of species and
reactions were compiled using the algorithm described
in Section 3. Species are given unique identifiers to
allow a more compact representation of reactions. Here
the species identifiers were chosen to be the same as in
Zhang et al. (2007).

but the rate k0 was considered to be negligible and
can be effectively ignored. Both models also assume
the presence of excess reporter molecules SR and OR,
which detect the signals SB and OB, respectively, as
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S + C
k1


k−1

I3 + SB (1)

I3 + F
k2−→ I5 + OB (2)

I5
k3


k−3

C + W (3)

S + C
ρ5


ρ−5

I1
ρ−3


ρ3

I3 +SB(4)

I3 + F
ρ3−→ I4→I5 + OB (5)

I5
ρ−5


ρ5

C + W (6)

Figure 5: Comparison between the manually-defined
reactions of Zhang et al. (2007), shown on the left,
and the compiled reactions of Figure 4, shown on the
right.

follows:

SB + SR
kT ET−→ TET (7)

OB +OR
kT ET−→ ROX (8)

The reporter SR binds to the signal SB causing the
release of the green tetrachlorofluorescein (TET ) flu-
orophore, while the reporter OR binds to the output
OB causing the release of the red carboxy-Xrhodamine
(ROX) fluorophore. Thus, the level of green and red
fluorescence can be used to measure of the concentra-
tion of signal and output strands, respectively.

The remaining reactions in Zhang et al. (2007) as-
sume that the binding rate for S and C is the same
as the binding rate for C and W , since both reactions
involve the same toehold sequence 5. Similarly, the
binding rate of I3 and SB is assumed to be the same
as the binding rate of I3 and F . Thus, k1 = k−3 = ρ5

and k−1 = k2 = ρ3. This is consistent with the reduc-
tion rules of the strand displacement language, which
assume that interactions on the same toehold occur at
the same rate.

For (5), since strand displacement is assumed to be
much faster than toehold unbinding, the unbinding re-
action on toehold 3 is effectively ignored, which is con-
sistent with (2). This assumption was previously dis-
cussed in Section 2.1. For (4), the original reactions
ignored the formation of the intermediate complex I1,
resulting in the approximation (1). The toehold un-
binding reaction ρ−3 is considered to be quite fast,
since toehold 3 is deliberately shortened to acceler-
ate strand unbinding. However, the original reactions
do not explicitly take into account the constraints be-
tween ρ−3 and ρ−5. According to our reactions, the
rate of unbinding of toehold 3 must be significantly
faster than the rate of unbinding of toehold 5, and we
can simulate the effects of different unbinding rates for
these toeholds.

In Figure 6 we simulate the system assuming that
toehold 3 unbinds 10 times more quickly than toehold
5, and we compare with the simulation of the origi-
nal reactions presented in Zhang et al. (2007). Even
with an order of magnitude difference, the effects on
the system behaviour are still noticeable. The faster
the unbinding rate for toehold 3, the closer the re-
sults to the original simulations (not shown). Thus we

Figure 6: Simulation results for the entropy-driven
catalytic gate of Figure 4, using reactions (4)-(8).
The rates are taken from Zhang et al. (2007), with
ρ5 = 6.5 · 105, ρ3 = 4.2 · 105, kTET = 8 · 105 and
kROX = 4 · 105M−1s−1, and with ρ−5 = 4 · 10−3s−1

and ρ−3 = 10 · ρ−5. Initial concentrations of S = C
= 10 nM, F = 13 nM and OR = SR = 30 nM were
used, where the concentration of C was varied by a
factor of 1 to 0.002. The levels of ROX fluorescence
(arbitrary units) were plotted over time (s) for differ-
ent input concentrations of catalyst C. The simulation
results for the reactions of Zhang et al. (2007) are rep-
resented on the same plot using dark colours, while
the results from the reactions of Figure 4 are in pale
colours. The simulation results of both systems differ
slightly, where the choice of rate constants is discussed
in the main text.

can quantify the impact of toehold strengths on the
overall system dynamics, prior to implementing the
physical system in DNA. Note that the chemical reac-
tions for the system were compiled directly from the
DNA molecules themselves, by application of the algo-
rithm outlined in Section 3. This simplifies the process
of evaluating new designs before their subsequent im-
plementation. In the original experimental setup, the
reaction rate k3 = ρ−5 was difficult to measure, and
was fit to the data. Even if we are unable to mea-
sure the exact rates experimentally, it is possible to
ensure constraints between rates, such as ρ−3 � ρ−5,
by choosing appropriate sequences for the correspond-
ing toehold domains.

2.3 Case Study: gate motif for large-
scale circuits

This case study uses the strand displacement language
to implement a DNA gate motif developed by Qian &
Winfree (2008). The motif was designed as a build-
ing block for synthesising large scale circuits involving
potentially thousands of gates.

Figure 7 presents an implementation of the seesaw
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S3 PGO*PTh* PI*T S3PF* S2 S4

Seesaw = ( PF * <S2 T S3> | PTh * [S3]:T^c
| PI * <S3 T S4> | PGO * <S1>[T S3]:T )

Figure 7: An implementation of the seesaw gate
of Qian & Winfree (2008) in the strand displace-
ment language. The gate consists of Fuel <S2 T S3>,
Threshold [S3]:T^c , Input <S3 T S4> and GateOut-
put molecules <S1>[T S3]:T, at initial concentrations
given by PF, PTh, PI and PGO respectively.
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I = <S3 T S4> Th = [S3]:T^c
F = <S2 T S3> GF = <S2>[T S3]:T
O = <S1 T S3> GO = <S1>[T S3]:T
e = <S3> GOI = <S1>[T S3]:<S3>[T]<S4>
w = [S3 T]<S4> GIF = <S2>[T]<S3>:[S3 T]<S4>

GI = T:[S3 T]<S4>

Th + I ->{rT*c} e + w
GO + I {rmT}<->{rT} GOI GOI {rT}<->{rmT} GI + O
GI + F {rmT}<->{rT} GIF GIF {rT}<->{rmT} I + GF

Figure 8: Species and reactions for the seesaw gate of
Qian & Winfree (2008). Starting from the molecules of
Figure 7, the set of species and reactions were compiled
using the algorithm described in Section 3.

gate of Qian & Winfree (2008) in the strand displace-
ment language. The gate is essentially a simplified
version of the catalytic gate developed by Zhang et al.
(2007). The main species and reactions for the gate
are presented in Figure 8. These were compiled from
the molecules of Figure 7 using the algorithm of Sec-
tion 3. The compiled reactions are consistent with the
manually-defined reactions of Qian & Winfree (2008).
From the compiled reactions we observe that the In-
put I is neutralised by the Threshold Th. Once all
of the Threshold molecules are consumed, the Input
can bind to the GateOutput GO, causing the release
of the Output O. The Fuel F binds to the GateInput
GI, causing the release of the Input I, which can be

subsequently re-used to catalyse the displacement of
additional Output molecules.

In addition to the reactions shown in Figure 7, there
are a number of spurious reactions between toehold do-
mains. For example, the Input <S3 T S4> can inter-
act with T:[S3 T]<S4> on toehold T. However, since
there is a mismatch in the specificity domains of these
molecules they will immediately unbind. Although
these reactions can potentially slow down the system,
they will not result in major interferences. This il-
lustrates an important principle when designing large-
scale circuits: the same toehold domain can be re-used
in multiple reactions, provided the specificity domains
are chosen accordingly. Toehold domains can bind and
unbind repeatedly, but a displacement reaction can
only progress if there is a subsequent match between
the adjacent specificity domains. In the remainder of
the paper we omit such spurious interactions on toe-
hold domains.

An empty seesaw gate T:S3:T consists of a single
domain S3 with toehold domains T to the left and
right. The Input binds to the right toehold of the
gate, while the Output and Fuel bind to the left toe-
hold. The Input, Output and Fuel strands are de-
fined as <S3 T S4> , <S1 T S3> and <S2 T S3>, re-
spectively, and are termed wires, since they can each
form a link between two gates. For example, the Input
wire <S3 T S4> can form a link between gates T:S3:T
and T:S4:T. The threshold molecules consume the In-
put, preventing it from binding to the main gate until
all of the threshold molecules are depleted. This acts
to filter out low levels of input that could have been
produced accidentally, such as by a leaky circuit. In
order to achieve this, the threshold gate is designed so
that it binds to the input at a much faster rate than
the main gate. In Qian & Winfree (2008) this is imple-
mented by extending the binding region of the thresh-
old toehold. Here, we implement the increased binding
rate by increasing the degree of matching of the thresh-
old toehold, so that it is significantly higher than the
degree of matching of other toeholds. Although the
maximum degree of matching is 1, in practice we can
encode a degree of matching greater than one by low-
ering the degree of matching of all other toeholds.

In general, each seesaw gate can interact with mul-
tiple wires to the left and right. We can model this by
defining two modules, SeesawL and SeesawR, as shown
in Figure 9. The specificity domains of the gate and in-
teracting wire are passed as parameters, together with
the populations of the threshold gate and the initially
bound wires. Figure 10 presents an instance of the see-
saw gate of Figure 7, using the more general modules
of Figure 9. A more abstract graphical representa-
tion of the gate is also given. Initial populations of
Fuel, Input and Output wires are given by 10, 1 and 0,
respectively. The populations are represented as num-
bers on the edges connected to the gate, where the
absence of a number denotes a population of 0. There
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SeesawL(S3,S1,PT,P)

TS3T

S1

T
c

S3 P*PT*

SeesawR(S3,S4,PT,P)

PT* T
c

S3 TS3

S4

TP*S3 T

Wire(S3,S4)

S4

Wire(S3,S4) = <S3 T S4>
SeesawL(S3,S1,PT,P) = PT * T^c:[S3] | P * <S1>[T S3]:T
SeesawR(S3,S4,PT,P) = PT * [S3]:T^c | P * T:[S3 T]<S4>

Figure 9: Generic modules for the seesaw gate of Fig-
ure 7.

Input S4

Output S1

Fuel S2

10

Gate S3

-0.5

10

1

( SeesawL(S3,S1,0,10.0) | SeesawR(S3,S4,0.5,0)
| 1*Wire(S3,S4) | 10*Wire(S2,S3) )

Figure 10: An instance of the seesaw gate of Figure 7,
using the more general modules of Figure 9. A more
abstract graphical representation of the gate is also
given.

is also an initial population of 10 Output wires bound
to the left side of the gate, assuming suitable popula-
tion units. This is indicated by the number 10 inside
the left half of the circle, next to the Output wire.
There are no Fuel or Input wires bound to the gate,
since there are no positive numbers inside the circle
next to the Fuel or Input wires. The negative number
-0.5 on the inside of the circle next to the Input wire
indicates an initial population of 0.5 threshold gates.
According to Qian & Winfree (2008), we assume that
a given seesaw gate will not have both a population of
bound wires and a population of threshold gates. Un-
der these assumptions, a single integer can be used to
represent both populations. If the integer is positive
then it represents the population of bound wires, and
if it is negative then its absolute value represents the
population of threshold gates. For the program defini-
tion of our seesaw modules, rather than using a single
integer we use two positive numbers PT and P, with
the additional constraint that both numbers cannot be
greater than zero simultaneously.

We can use these modules to implement the logical
OR gate presented in Qian &Winfree (2008), as shown
in Figure 11. Gates with a dotted outline have a pop-
ulation of zero, and are not needed. They are mainly
included to give a uniform representation. As a result,
for the OR gate implementation only domains 3 and 4
need to be passed as parameters. The OR gate takes
two wires that bind to the left of domain 3. Once one
or both of these wires are present in sufficient num-
bers to consume all of the threshold gates, they will
displace the wire <3 T 4> that is bound on the right
of domain 3. The fuel <3 T 5> ensures that the bound
input wires are freed again from the gate 3. A mod-
ule for the AND gate can also be defined, though its
behaviour is more complicated (see Qian & Winfree
(2008) for full details). Here we have shown how see-

-.5

3

1.5

w13

w23

-.5 2.5

1

2

w34

4

5

w34 = w13 OR w23

OR(3,4) = new (1,2,5)
( SeesawL(3,1,0.5,0) | SeesawL(3,2,0.5,0)
| SeesawR(3,4,1.5,0)| 2.5*Wire(3,5) )

Figure 11: Example logical OR circuit made of seesaw
gates. Signal concentrations below 0.1x are considered
OFF, while signal concentrations above 0.9x are con-
sidered ON.

saw gate modules can be used to construct simple logic
gate modules, which can in turn be used to construct
complex logical circuits of arbitrary size.

2.4 Case study: compiling chemical re-
actions to DNA

The previous case studies described how physical DNA
systems can be represented as molecules in the strand
displacement language. The molecules were then sys-
tematically translated to chemical reactions for sim-
ulation and analysis. This case study addresses the
reverse question of how to translate an arbitrary set
of chemical reactions to a set of DNA molecules, in
order to systematically derive a physical DNA imple-
mentation. The question was previously addressed in
Soloveichik et al. (2008) by translating a given set of
chemical reactions to an extended set of reactions rep-
resenting the implemented system. Here we present a
translation from a set of chemical reactions directly to
a set of DNA molecules. The extended set of reactions
for these molecules is then derived automatically using
the algorithm of Section 3.

We first illustrate the principle of the translation
on a number of simple chemical reactions, using the
approach presented in Soloveichik et al. (2008). Es-
sentially, each chemical species X is associated with
three distinct domains X1,X2,X3, where X1 and X3 are
toeholds. The general form of a species X is given by
<H X1 X2 X3>, where <X1 X2 X3> denotes the recogni-
tion region of the species, and <H> denotes the history
region. We assume that members of the same species
must all have the same recognition region, but can have
different history regions.

Figure 12 presents a DNA implementation of a
degradation reaction A r−→ ∅, where species A is asso-
ciated with the recognition region <2 3 4>. The reac-
tion is implemented by a population of gates g, which
transform a strand <1 2 3 4> into inert waste. The
reaction rate r is obtained by using a constant popu-
lation Pg of gates g, such that r = ρ2 · Pg. In order
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A = <1 2 3 4> g = 2:[3 4]
e = <3 4> w = <1>[2 3 4]

A + g ->{r2} w + e

Figure 12: DNA implementation of a degradation re-
action A r−→ ∅. The implementation uses a constant
population Pg of gates g such that r = ρ2 · Pg.
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Output B
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A = <1 2 3 4> g = 2:[3 4]<5 6>
o = <3 4 5 6> t = 4:[5 6]<7 8>
B = <5 6 7 8> wt = <3>[4 5 6]

wg = <1>[2 3 4]

A + g ->{r2} wg + o o + t ->{r4} wt + B

Figure 13: DNA implementation of a transition reac-
tion A

r−→ B. The implementation uses a constant
population Pg of gates g such that r = ρ2 · Pg, and a
very large constant population Pt of translation gates
t such that ρ4 · Pt� r.

to achieve this, Soloveichik et al. (2008) assume an ex-
cess population of gates that is large enough to remain
effectively constant. We adopt the same approach for
the implementation of constant gate populations, but
later discuss a potential alternative.

Figure 13 presents a DNA implementation of a tran-
sition reaction A r−→ B. As with degradation, the re-
action is implemented by a constant population Pg of
gates g such that r = ρ2 · Pg. In order to ensure that
the domains of species B are completely independent
from the domains of species A, an additional transla-
tion gate t is needed. Furthermore, in order to ensure
that the reaction remains effectively first order, a very
large constant population Pt of translation gates t is
used, such that ρ4 · Pt� r.

Figure 14 presents a DNA implementation of a pro-
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109643 5 94 5 6
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95 6 10
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5 876 9 121110

Input A Gate g

Intermediate o Gate t

Waste wt Output B Output C

10

2 3 4

1

Waste wg

+2

+4

A = <1 2 3 4> g = 2:[3 4]<5 6 9 10>
o = <3 4 5 6 9 10> t = 4:[5 6]<7 8>:[9 10]<11 12>
B = <5 6 7 8> wt = <3>[4 5 6 9 10]
C = <9 10 11 12> wg = <1>[2 3 4]

A + g ->{r2} wg + o o + t ->{r4} wt + B + C

Figure 14: DNA implementation of a production reac-
tion A

r−→ B + C. The implementation is similar to
Figure 13, except that the translation gate t produces
two output strands instead of one.

duction reaction A
r−→ B + C. The implementation

of the reaction is similar to Figure 13, except that the
intermediate output strand o displaces two strands in-
stead of one from the translation gate t, which corre-
spond to the two output species of the reaction.

Figure 15 presents a DNA implementation of a bi-
nary reaction A + B

r−→ C. The implementation is
less straightforward than the previous examples, since
the output C must only be produced when both inputs
A and B are present. The solution, as presented in
Soloveichik et al. (2008), is to use a linker gate l that
rapidly binds and unbinds the reactant B, such that
the bound and free species B are in equilibrium, where
f(Bg) denotes the fraction of bound species B. When
the species A is present, it can interact with the bound
form of species B to complete the reaction. The rates
and populations are chosen such that r = f(Bg) · ρ6.

Figure 16 presents a more general translation from
chemical reactions to DNA molecules, based on the
approach presented in Soloveichik et al. (2008). The
translation is defined for unary and binary reactions,
but translations for higher-order reactions can be de-
fined in a similar fashion. The translation is defined as
a collection of modules in the strand displacement lan-
guage, which take the populations of gates and buffers
as parameters. The populations are chosen so as to ac-
curately implement the corresponding reaction rates,
using the approach outlined in the previous examples.
The populations also take into account the fact that a
given species may be involved in multiple binary inter-
actions simultaneously and can therefore bind to mul-
tiple different gates, affecting the equilibrium of free
and bound species. As an alternative to varying the
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A = <5 6 7 8> Bg = <1>[2 3]<4>:6:[7 8]<9 10>
o = <7 8 9 10> t = 8:[9 10]<11 12>
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B + l {rm2}<->{r2} Bl Bl {rm5}<->{r5} b + Bg
Bg + A ->{r5} o + wg o + t ->{r8} C + wt

Figure 15: DNA implementation of a binary reaction
A+B

r−→ C. The implementation uses large constant
populations Pl and Pb of linker gates l and buffers b,
respectively, such that Pl · ρ2 and Pb · ρ6 � r. Fur-
thermore, the toehold unbinding rates are chosen such
that ρ−2 and ρ−6 � r. These constraints ensure that
an equilibrium can be rapidly established between the
population of free linker gates l and bound linker gates
Bg. The rates and populations are also chosen such
that r = f(Bg) · ρ6, where f(Bg) denotes the fraction
of bound species Bg at equilibrium. As with the unary
reactions, we use a very large constant population Pt
of gates t such that ρ8 · Pt� r.

initial gate populations, we can also vary the degree
of complementarity of toeholds for each reaction, as
discussed in Soloveichik et al. (2008).

As an example, we consider the coupled chemical re-
actions for the chaotic system due to Willamowsky and
Rossle, which was used as a case study in Soloveichik
et al. (2008). The reactions for this system are sum-
marised in Table 1, together with their translation to
DNA molecules. The translation is implemented using
a set of modules for unary and binary reactions, which
are defined in a similar fashion to the general mod-
ules presented in Figure 16. The local domains used in
each of the modules ensure that the domains of differ-

X3X2X1

A1 A2 A3

I1
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IN
XN1

INA3 I1

X12

X13

X11 XN1

XN2

XN3

INB3 I1

X12

X13

X11 XN1

XN2

XN3

B2A1 A2 B1 B3

unaryN( (A1, A2, A3), Pg, (X11, X12, X13), ... , (XN1, XN2, XN3) ) 

I1
X11

IN
XN1

species(P,X1, X2, X3)

(I1,...,IN)

(I1,...,IN)

B1A2

Pg* Pt*

Pt*Pl* Pb*

binaryN( (A1, A2, A3), (B1, B2, B3), Pl, Pb, (X11, X12, X13), ... , (XN1, XN2, XN3) ) 

P*

species(P,X1,X2,X3) = P * <X1 X2 X3>

unaryN((A1,A2,A3),Pg,(X11,X12,X13),...,(XN1,XN2,XN3))=
new (I1,...,IN)
( Pg * A1:[A2 A3]<I1 X11 ... IN XN1>
| Pt * A3:[I1 X11]<X12 X13>:...:[IN XN1]<XN2 XN3> )

binaryN((A1,A2,A3),(B1,B2,B3),Pl,Pb
(X11,X12,X13),...,(XN1,XN2,XN3)) =

new (I1,...,IN)
( Pl * A1:[A2 B1]:[B2 B3]<I1 X11 ... IN XN1>
| Pb * <A2 B1>
| Pt * B3:[I1 X11]<X12 X13>:...:[IN XN1]<XN2 XN3> )

Figure 16: Translation from chemistry to DNA, based
on the approach presented in Soloveichik et al. (2008).
The translation is defined as a collection of modules in
the strand displacement language, where each chem-
ical species X is associated with three distinct do-
mains (X1,X2,X3). The species module implements
an initial population P of the species represented by
domains (X1,X2,X3). The unaryN and binaryN mod-
ules implement unary and binary reactions of the form
A

ri−→ X1 + . . .+XN and A+B ri−→ X1 + . . .+XN , re-
spectively. The modules rely on a set of local domains
(I1,...,IN) to limit interference between reactions.
We assume that populations Pg, Pl, Pb and Pt are
large enough to remain effectively constant, and that
Pt is large enough to implement reactions that are ef-
fectively immediate. The populations Pg, Pl, Pb are
passed as parameters to the modules, and are chosen to
accurately implement the corresponding reaction rates
as follows. We let f(X) denote the fraction of unbound
species X and let f(Xg) denote the fraction of species
X bound to a gate g. These populations can be com-
puted beforehand, assuming that an equilibrium be-
tween free and bound species is quickly reached. In
the unary case, r = ρA1 · Pg · f(A) and ρA3 · Pt � r.
In the binary case, r = ρB1 · f(B) · f(Ag) and ρB3 ·Pt,
ρA1 · Pl, ρB1 · Pb, ρ−B1 , ρ−A1 � r . The latter con-
straints ensure that all intermediate reactions are fast
enough with respect to r that they can be effectively
ignored.

ent gates do not interfere with each other. Expanded
versions of these modules are shown in Figure 17. The
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Figure 17: DNA molecules obtained by expanding the
modules of Table 1.
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Ag2 + b2

A+Ag2
A1−→ o2

o2 + t2 −→ A

3
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−B1

Bl3
−A1


A1

Bg3 + b3

A+Bg3
A1−→ o3

o3 + t3 −→ B +B

4
{
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−A1

Al5
−C1
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Ag5 + b5

C +Ag5
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−C1

Cl7
−C1
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Cg7 + b7

C + Cg7
C1−→ o7

o7 + t7 −→ C

Figure 18: Main species and reactions for the DNA
molecules of Figure 17. The reactions were compiled
using the algorithm of Section 3.

Table 1: DNA implementation of the chaotic chemical
system due to Willamowsky and Rossle, based on the
implementation of Soloveichik et al. (2008). The reac-
tion rates are defined as r1 = 0.03, r2 = r7 = 5× 104,
r3 = r5 = 105, r4 = 0.01, r6 = 0.0165. The im-
plementation uses modules unary0, unary2, binary0,
binary1, and binary2, which are defined in a similar
fashion to the general modules unaryN and binaryN
presented in Figure 16. The populations Pg1,...,Pl7,
Pb2, Pb3, Pb, Pb7 and the toehold binding and unbind-
ing rates are chosen to accurately implement the cor-
responding reaction rates. The populations are passed
as parameters to the modules, along with the species
A, B, C, where A = (A1,A2,A3), B = (B1,B2,B3) and
C = (C1,C2,C3).

# chemistry dna molecules
1 A

r1−→ 2A unary2(A,Pg1,A,A)

2 2A r2−→ A binary1(A,A,Pl2,Pb2,A)

3 B +A
r3−→ 2B binary2(B,A,Pl3,Pb3,B,B)

4 B
r4−→ unary0(B,Pg4)

5 A+ C
r5−→ binary0(A,C,Pl5,Pb5)

6 C
r6−→ 2C unary2(C,Pg6,C,C)

7 2C r7−→ C binary1(C,C,Pl7,Pb7,C) )

expansion is performed automatically by the compiler,
as described in Section 3.

The main species and reactions generated from the
DNA molecules are presented in Figure 18. The reac-
tions are similar to those presented in Soloveichik et al.
(2008), except that there are two reversible reactions
instead of one for establishing an equilibrium between
species, linker gates, and buffer strands. The addi-
tional reactions will not affect the overall dynamics of
the system, provided they are effectively immediate.
According to Figure 18, this will require the toehold
unbinding rates involved in all of the equilibrium re-
actions to be sufficiently rapid. In addition to the re-
actions represented in Figure 18, a number of other
reactions are generated, which arise from the fact that
the toeholds of some of the intermediate outputs can
bind to multiple gates. For example, toehold A3 of the
intermediate output <A2 A3 I1 A1 J1 A1> can bind
to three distinct gates, even though it can only dis-
place strands from one of these gates. This should not
significantly affect the overall dynamics, provided the
toehold unbinding rates are also fast. Nevertheless, it
is important to take into account these factors when
determining toehold rates and gate populations.

As mentioned previously, the translations assume
that reaction gates are present in sufficiently large
numbers so as to remain effectively constant over time.
Another way of ensuring constant gate populations is
to introduce a reservoir of inactive gates that become
active each time a gate is used. An example design
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Figure 19: A possible implementation of a replenish-
able gate. The gates g and t implement a reaction of
the form A

r−→ B. The extra reserve r is in excess, so
that whenever a reaction is executed, a new gate with
the same function as g is activated to take the place of
the gate that was used.

is presented in Figure 19. The advantage of this de-
sign is that we have a more precise control over the
gate populations, and can use lower population num-
bers. If needed, we can continually supply new inactive
gates to ensure that the active gate population is kept
constant indefinitely.

Another issue that needs to be addressed is the
fact that buffer strands continually accumulate after
each execution of a bimolecular reaction. It should
be possible to engineer a more sophisticated collection
of molecules that also recycles excess buffer strands
from the system, so that the population of buffer
strands is kept constant. Finally, in many cases com-
plete sequence independence between strands may not
be necessary, allowing various optimisations to be in-
troduced, as discussed in Soloveichik et al. (2008).
The use of a concise strand displacement language
for describing the interactions between DNA molecules
should facilitate the design and analysis of such opti-
misations.

3 Methods

In this section we formalise the DNA strand displace-
ment language as a process calculus. We give defi-
nitions for the syntax and execution rules of the cal-
culus, together with its translation to chemical reac-
tions. The definitions are given in the style of pro-
cess calculi such as the pi-calculus (Milner, 1999; San-
giorgi &Walker, 2001; Turner, 1996), with the addition
of a stochastic reduction semantics along the lines of
Phillips & Cardelli (2007). The formal definitions are
used as the basis for an implementation of the strand
displacement language, and are also used to reason
about basic language properties.

3.1 Syntax of the strand displacement
calculus

The syntax of the DNA strand displacement calculus
(DSD) is defined in terms of molecules D, molecule seg-
ments G and sequences S, L, R, as shown in Table 2. A

Table 2: Syntax of the DNA strand displacement cal-
culus (DSD), defined in terms of molecules D, molecule
segments G and sequences S, L, R. The syntax assumes
that 0 < c ≤ 1 and that all toeholds in an upper strand
<_ S _> have a degree of matching c = 1.

dsd syntax description
D () Empty molecule

<_ S _> Upper strand with sequence
complementary to S

G Molecule segment G
D1 | D2 Parallel composition of

molecules D1 and D2
new N D Molecules D with local domain

N
X(n) Instance of a module X with

parameters n
G N^c Toehold domain N with degree

of matching c
<L>[S]<R> Double strand [S] with left

and right overhangs <L>, <R>
G1:G2 Concatenation of G1 and G2

S N Domain N
N^c Toehold domain N with degree

of matching c
S1 S2 Concatenation of S1 and S2

L _ Empty sequence
_ S Left overhanging sequence S

R _ Empty sequence
S _ Right overhanging sequence S

Table 3: Syntax abbreviations for the strand displace-
ment calculus.

syntax abbreviation
S _ S
_ S S
N^1 N
<_>[S]<R> [S]<R>
<L>[S]<_> <L>[S]
new N1 ... new NK D new (N1,...,NK) D
D | ... | D︸ ︷︷ ︸

K

K*D

molecule D can be an upper strand <_ S _> with a se-
quence that is complementary to S. The upper strand
is terminated by an empty sequence _ at both ends,
to allow for potentially empty left and right overhangs
when an upper strand binds to a molecule. The up-
per strand can also be abbreviated to <S> by omitting
the empty sequences. A sequence S is a concatenation
of one or more domains N, where a domain is a name
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or number that represents a specific DNA sequence.
A toehold domain is represented as N^c, where c de-
notes the degree of matching, such that 0 < c ≤ 1.
Toehold sequences are assumed to be between 4 and
10 nucleotides in length. Sequences L and R denote
potentially empty sequences that overhang to the left
and right of a bound upper strand, respectively. A
segment G can be a lower strand with a single toehold
domain N^c, or a double strand <L>[S]<R> consisting
of an upper strand <L S R> bound to a lower strand
S. The upper and lower strands are bound along the
double-stranded region [S], with upper strands <L>
and <R> overhanging to the left and right. A segment
G can also be a concatenation G1:G2 of two segments
G1 and G2. Importantly, when two segments are con-
catenated they are assumed to be joined along a con-
tinuous lower strand. Thus, the syntax only allows a
single lower strand per molecule.

Multiple molecules D1,...,DK can be executed in par-
allel, written D1|...|DK. A domain N can also be re-
stricted to molecules D, written new N D. This repre-
sents the fact that domain N is unique to molecules
D and does not occur in any other molecules. Fi-
nally, a molecule can be an instance X(n) of a mod-
ule X with parameters n. We assume the exis-
tence of a fixed environment of module definitions
X1(m1)=D1,...,XK(mK)=DK. The definitions are as-
sumed to be non-recursive, such that a module cannot
invoke itself, either directly or indirectly via another
module.

We define a number of syntactic abbreviations
for the calculus, as summarised in Table 3. We
omit terminating empty sequences, where S _ and
_ S are abbreviated to S, and we abbreviate a toe-
hold N^1 with degree of matching 1 to N. We also
omit empty overhanging strands, where <_>[S]<R>
is abbreviated to [S]<R>, and <L>[S]<_> is ab-
breviated to <L>[S]. We abbreviate successive re-
strictions new N1...new NK D to a single restriction
new (N1,...,NK) D. Finally, we abbreviate K identi-
cal copies of a molecule D | ... | D︸ ︷︷ ︸

K

to K*D.

3.2 Semantics of the strand displace-
ment calculus

We consider a reduction semantics that explicitly rep-
resents toehold binding, toehold unbinding and strand
displacement, as defined in Table 4. Each toehold N^c
is assigned corresponding binding and unbinding rates
given by ρN and ρ−N , respectively. The rule D r−→ D’
means that D can reduce to D’ with rate r. We write
D
r


r′
D’ as an abbreviation for D r−→ D’ and D’ r′−→ D .

We also write D −→ D’ as an abbreviation for D ξ−→ D’,
where ξ represents a rate that is significantly faster
than any of the toehold unbinding rates.

Rules (RB) and (RU) model strand binding and

unbinding along a toehold. Analogous rules are also
needed to represent toehold binding and unbinding in
absence of G1, G2, or both (not shown). Rules (RDR)
and (RDL) model a strand being displaced from a
molecule to the right and left, respectively. Rule (RE)
allows reduction up to re-ordering of molecules. The
re-ordering relation is defined in Table 5, where D ≡ D’
means that D and D’ are equivalent up to mixing of
molecules and branch migration. We also allow the
following approximation to be made: if D

ρN



ρ−N

D’ −→ D

then D
ρN−→ D’, since the reverse reaction at rate ρ−N

will have a negligible rate compared to the alternative
forward reaction at rate ξ.

As mentioned above, a notion of equivalence (≡) is
defined in Table 5 to allow for mixing and branch mi-
gration of molecules. The relation is assumed to be re-
flexive, symmetric and transitive. Essentially, the rules
state that the order of parallel molecules is not impor-
tant, since molecules are assumed to be well-mixed.
In addition, since branch migration reactions happen
very quickly compared with binding and unbinding re-
actions, molecules are considered to be equivalent up to
branch migration. Rule (ENP) ensures that a domain
N that is local to molecules D1 is not used in any par-
allel molecules D2. If there are any name clashes, the
domain N is renamed locally inside D1. The set fn(D)
denotes the set of free domain names that are used by
molecules D, where new N D acts as a binder for name
N in D. Rule (ED) allows an instance of a module to
be replaced with its definition, where the parameters
m are replaced with n in molecules D, written D{m:=n}.

One of the key assumptions of the language is that
two single-stranded molecules can only interact with
each other via complementary toehold domains. This
is enforced at a syntactic level, by ensuring that a
molecule with a lower strand is either a single-stranded
toehold domain N^c or a double-stranded sequence
with left and right overhangs. Thus, in order to ensure
that single strands can only ever interact on toeholds,
it is sufficient to show that the syntax of the language
is preserved by reduction. This property is captured
by Proposition 1.

Proposition 1. ∀D ∈ DSD if D r−→ D’ then D ∈ DSD.

Proof. By induction on the derivation of reduction, ac-
cording to Table 4. By inspection of the reduction
rules, we observe that none of the rules result in the
liberation of a single-stranded, non-toehold region of
a lower strand. Since reduction is also defined up to
structurally equivalent molecules, we prove a similar
property for the structural equivalence rules of Ta-
ble 5.

3.3 Compiling DNA molecules to reac-
tions

Given a collection of DNA molecules, we generate a
corresponding set of reactions by repeated application
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Table 4: Reduction rules of the strand displacement calculus.

rule condition before reduce after

RB <L N R> | G1:N^c:G2
(ρN )·c−→ G1:<L>[N^c]<R>:G2

RU G1:<L>[N^c]<R>:G2
(ρ−N )/c−→ <L N R> | G1:N^c:G2

RDR <L1>[S1]<S2 R1>:<L2>[S2]<R2> −→ <L1>[S1 S2]<R1> | <L2 S2 R2>
RDL <L1>[S1]<R1>:<L2 S1>[S2]<R2> −→ <L1 S1 R1> | <L2>[S1 S2]<R2>
RGR G r−→ G’ G:G2 r−→ G’:G2
RGL G r−→ G’ G1:G r−→ G1:G’
RP D1 r−→ D1’ D1 | D2 r−→ D1’ | D2
RN D r−→ D’ new N D r−→ new N D’
RE D1≡D2 r−→D2’≡D1’ D1 r−→ D1’

Table 5: Structural equivalence rules of the strand displacement calculus.

rule condition before equal after
EZ D | () ≡ D
EC D1 | D2 ≡ D2 | D1
EA D1 | (D2 | D3) ≡ (D1 | D2) | D3
ED X(m) = D X(n) ≡ D{m:=n}
ENP N /∈ fn(D2) (new N D1) | D2 ≡ new N (D1 | D2)
EP D1 ≡ D1’ D1 | D2 ≡ D1’ | D2
EN D ≡ D’ new N D ≡ new N D’
EM <L1>[S1]<S2 R1>:<L2>[S2 S3]<R2> ≡ <L1>[S1 S2]<R1>:<L2 S2>[S3]<R2>
EL G ≡ G’ G1:G ≡ G1:G’
ER G ≡ G’ G:G2 ≡ G’:G2

of the reduction rules of Table 4, where each applica-
tion of a reduction rule corresponds to a single reac-
tion. The generated reactions can in turn generate new
molecular species, where molecules are assumed to be
equal up to branch migration, as defined in Table 5.
This is implemented by defining a standard form for
segments, where a segment G is in standard form if all
of its branches are migrated as far as possible to the
right. In order to show that two segments are equal
up to branch migration, it is sufficient to show that
they have the same standard form. We also define a
standard form for molecules, where molecules D are in
standard form if all local domains are at the top-level
and all module definitions are expanded with their re-
spective parameters. The standard form is presented
in Definition 2, where all segments and molecules ad-
mit a standard form, as stated in Proposition 3.

Definition 2. A segment G is in standard form if all of
its branches are migrated as far as possible to the right.
A collection of molecules D is in standard form if it
consists of a set of parallel upper strands and segments,
with a top-level set of local domains:
new N1...new NK (<S1>|...|<SI> | G1|...|GJ)

Proposition 3. All segments G and molecules D admit
a standard form.

Proof. Any branches in a segment G can be migrated
to the right by application of rule (EM). Any local do-
mains new N in molecules D can be moved to the top-
level by application of rule (ENP), while any module
instances X(n) can be replaced with their correspond-
ing definitions by application of rule (ED). This results
in a set of parallel upper strands and segments, with a
top-level set of local domains.

We implement a translation from DNA molecules to
chemical reactions by defining the syntax and execu-
tion rules of a corresponding compiler. The syntax of
the DSD compiler is defined in Table 6, where a term
T of the compiler consists of a set of local domains
N , upper strands S, segments G and reactions R. A
reaction can be either unary or binary, where a unary
reaction (G, r, <S>, G′) consists of a segment G that can
reduce with rate r to an upper strand <S> and a seg-
ment G’. A binary reaction (<S>, G, r, G′) consists of an
upper strand <S> and a segment G that can reduce with
rate r to a segment G’.

The execution rules of the DSD compiler are defined
in Table 7. The rules are of the form D⊕ (N,S,G,R),
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Table 7: Adding molecules to a term of the DSD compiler. We start by adding molecules D to an empty compiler
term (�,�,�,�), written D ⊕ (�,�,�,�). The result is a compiler term containing the set of all strands S,
segments G, and reactions R that are generated from the initial molecules D. The rules assume that all molecules
D and segments G are in standard form.

rule conditions before def after
CR {θ1, ..., θN} ⊕ T , θ1 ⊕ ...⊕ θN ⊕ T
CU (G, r, <S>, G′)⊕ T , <S>⊕ G′ ⊕ T
CB (<S>, G, r, G′)⊕ T , G′ ⊕ T
CN (new N D)⊕ (N,S,G,R) , D⊕ ({N}∪N,S,G,R)
CP (D1|D2)⊕ T , D1 ⊕ D2 ⊕ T
CSZ <S> ∈ S <S>⊕ T , T

CGZ G ∈ G G⊕ T , T

CS <S> /∈ S
G =

⋃
i∈I Gi R′ =

⋃
i∈I Ri

Ri = {(<S>, Gi, r, G′) | <S>|Gi
r−→ G′}

<S>⊕ (N,S,G,R) , R′ ⊕ (N, {<S>}∪S,G,R∪R′)

CG G /∈ G
S =

⋃
i∈I <Si> R′ =

⋃
i∈I Ri ∪R0

R0 = {(G, r, <S>, G′) | G r−→ <S>|G′}
Ri = {(<Si>, G, r, G′) | <Si>|G

r−→ G′}

G⊕ (N,S,G,R) , R′ ⊕ (N,S, {G}∪G,R∪R′)

Table 6: Syntax of the DSD compiler, where a term T
consists of a set of local domains N , upper strands S,
segments G and reactions R.

dsdc syntax description
T (N,S,G,R) Local domains N , upper

strands S, segments G,
reactions R

S {<S1>, ..., <SN>} Set of N upper strands
G {G1, ..., GN} Set of N segments
R {θ1, ..., θN} Set of N reactions
θ (<S>, G, r, G′) reactants <S> and G,

rate r, product G’
(G, r, <S>, G′) reactant G, rate r,

products <S> and G’

which adds molecules D to a term (N,S,G,R) of the
compiler. Initially, molecules D are added to an empty
compiler term (�,�,�,�). Each time a new molecule
is added, the set R is augmented with the set of all
possible reactions between the new molecule and the
existing molecules in the compiler. Each time a new
reaction is added, any new molecules generated by the
reaction are themselves added to the compiler. This
process continues until no new molecules can be gen-
erated. The result is a compiler term containing the
set of all strands S, segments G, and reactions R that
are generated from the initial molecules D. The rules
of the compiler are summarised as follows:

• (CR) A set of reactions is added to a term by

adding each reaction individually.

• (CU) A unary reaction (G, r, <S>, G′) is added to a
term by adding the products <S> and G’.

• (CB) A binary reaction (<S>, G, r, G′) is added to
a term by adding the product G’.

• (CN) A local domain is added to the set of local
domains of the compiler. Since molecules are as-
sumed to be in standard form, the domain will be
globally unique.

• (CP) Parallel molecules are added one at a time.

• (CSZ) A strand <S> is discarded if it is already
present in the compiler

• (CGZ) A segment G is discarded if it is already
present in the compiler

• (CS) If a strand <S> is not already present then
it is added to the set S. For each segment Gi
in the compiler we compute the set Ri of reac-
tions between <S> and Gi, written {(<S>, Gi, r, G′) |
<S>|Gi

r−→ G′}. The resulting reactions are then
added to the compiler.

• (CG) If a segment G is not already present then
it is added to the set G. For each strand <Si>
in the compiler we compute the set Ri of reac-
tions between G and <Si>, written {(<Si>, G, r, G′) |
<Si>|G

r−→ G′} . We also compute the set R0 of re-
actions involving G alone, written {(G, r, <S>, G′) |
G r−→ <S>|G′}. The resulting reactions are then
added to the compiler.

15



3.4 Compiling to DNA sequences
One important issue that we have deliberately not ad-
dressed is the automatic compilation of domains to
nucleotide sequences. This is a challenging problem
that requires a detailed theoretical treatment, and is
therefore beyond the scope of this paper. Instead,
we propose to adopt the semi-automated approach de-
scribed by Zhang et al. (2007). The approach uses se-
quences composed of A,C,T and A,G,T for upper and
lower strands, respectively, assuming Watson-Crick
base pairing between A,T and between G,C. As dis-
cussed in Zhang et al. (2007), the restricted alpha-
bet for upper and lower strands reduces potential sec-
ondary structure, assuming that specificity domains
on the lower strands are never exposed, as stated
in Proposition 1. The approach first chooses ran-
dom sequences composed of only A,C,T for the do-
mains in the upper strands, and then constructs the
complementary domains for the lower strands accord-
ingly. Sub-sequences known to be problematic are
altered by hand, such as GGGG which causes to G-
quadruplexing, or AAAAA which causes synthesis dif-
ficulties. The remaining sequences are then concate-
nated as appropriate to form DNA strands, which are
folded using the mFold web-server (Zuker, 2003) to
check for the presence of undesired interactions. If nec-
essary some of the domains in the upper strands are
changed by hand to G, and the corresponding domains
in the lower strands are updated accordingly.

For specificity domains, the sequences are long
enough that they can be chosen to avoid interferences
between domains while also avoiding secondary struc-
tures. For toehold domains, however, the number of
unique sequences is limited, since toeholds are only be-
tween 4 and 10 nucleotides in length. As a result, a
check on the total number of distinct toeholds will need
to be made before attempting to implement a given
DNA circuit. This can be achieved by converting the
circuit to standard form, according to Definition 2, and
then counting the total number of distinct toehold do-
mains. Circuits where this number exceeds the given
limit will not be implementable, which can be signaled
by a compilation error.

As a rough estimate, we can use the results presented
in Marathe et al. (2001) to obtain approximate upper
and lower bounds on the number of distinct toehold
domains. For example, if we assume that toehold do-
mains are DNA sequences of length 10 that differ from
one another by at least 3 letters, then the number of
distinct sequences that do not interfere with each other
on complementary strands, denoted by AR4 (10, 3), is
calculated to be between 1184 and 16912. Note that
further work is needed to reduce the gap between the
upper and lower bounds, and the estimate does not
take into account the constraint that secondary struc-
tures should be avoided, which further reduces the
number of suitable sequences. Given that a single mis-
match along a nucleotide sequence is sufficient to sig-

nificantly disrupt toehold binding, it may be sufficient
for toeholds to differ by only 2 letters, in which case
the number of distinct sequences AR4 (10, 2) is 131072.
As with the previous calculation, this also includes se-
quences that exhibit secondary structures, which will
need to be removed. Note also that there is a trade-off
between the number of distinct toeholds and the extent
to which the degree of matching matching of a given
toehold can be varied. A more drastic approach for
reducing secondary structure of toeholds is to use se-
quences composed of only A,C,T for upper strands, as
discussed previously. For 3-letter sequences of length
10 that differ by at least 2 letters, this gives a lower
bound of A3(10, 2) ≥ 2811.

In spite of these limitations, it is worth noting that
we do not need a large number of distinct toeholds in
order to implement a large-scale DNA circuit. This is
because the toehold is just a starting sequence for a
strand displacement reaction: if the toehold binds but
the adjacent branch migration region does not, then
the branch migration is going to bounce back at the
site of the first major disagreement, and the toehold
will unbind. Although these reactions will potentially
slow down the system, they will not result in major
interferences. This allows the same toehold domain
to be used in combination with a potentially unlim-
ited number of specificity domains. Thus, a limit on
the number of distinct toeholds should not significantly
limit the size of a circuit. For example, if we consider
the gate motifs in Section 2.3 for designing large-scale
logic circuits, only a single toehold domain T was used.

4 Discussion
This paper presented a programming language and
compiler for designing and simulating DNA circuits in
which strand displacement is the main computational
mechanism. Starting from an initial set of molecules,
the compiler computes the set of all possible reactions
together with the set of all possible molecules that can
be produced. The generated reactions can then be sim-
ulated using standard approaches, in order to evaluate
the circuit design. This greatly simplifies the design
and testing of DNA circuits prior to their subsequent
implementation. The language was developed to take
into account recent experimental and theoretical re-
sults on the design of large-scale, efficient, modular
DNA circuits. There are a number of areas for future
work, as outlined below.

The strand displacement language differs from tra-
ditional imperative languages such as Pascal or C in
that the main primitives of the language are geared to-
wards an implementation in physical DNA molecules.
In particular, the language supports concurrent execu-
tion of molecules by means of a parallel composition
primitive, and parallel molecules can interact with each
other via specific toehold domains. Although the lan-
guage also features more traditional primitives such as
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parameterised modules and local variables, it is much
closer to concurrent programming languages such as
Phillips & Cardelli (2007) than to traditional impera-
tive languages. Furthermore, instead of compiling the
program to a sequence of binary digits for execution
by a computer, programs will ultimately be compiled
to sequences of letters A,C,G,T, that code for specific
DNA molecules. For testing purposes, programs are
compiled to a set of chemical reactions by the compiler
of Section 3, and the resulting reactions are simulated
using standard tools.

In this paper we have presented the core primitives
of the strand displacement language, but additional
programming constructs can be added as straightfor-
ward extensions. For example, conditionals can be
used to check whether two domains are equal, and
while loops can be used to iterate over a collection
of molecules. Arithmetic expressions can also be used
to express the initial populations of molecules. In all
cases, the result of these computations will be a set of
DNA molecules, which will then be compiled to phys-
ical DNA sequences or to a set of chemical reactions
for simulation.

Developing a language that is tailor-made for mod-
elling a particular class of DNA circuits has advantages
in terms of the clarity of the models and their close
resemblance to physical implementations. From a the-
oretical perspective, however, it would also be interest-
ing to investigate whether the strand displacement cal-
culus can be encoded using more general calculi such
as kappa calculus (Danos et al., 2007) or stochastic
pi-calculus (Priami, 1995; Phillips & Cardelli, 2007).
Initial attempts suggest that such encodings are non-
trivial and worthy of future investigation.

The design of the strand displacement language is
still in its early stages, and there are many ways in
which the language can be extended, such as allowing
molecules to contain multiple lower strands. There is
also scope for defining additional syntactic constraints
on molecules, in order to limit interference between
molecular domains. Another issue that we have de-
liberately avoided relates to secondary structures in
DNAmolecules. We have already mentioned how DNA
sequences can be selected in order to eliminate such
structures, but in future we may wish to include sim-
ple features such as hairpin motifs, as used by Yin et al.
(2008).

Rather than translating DNA molecules to chemical
reactions and then simulating the reactions in a sepa-
rate tool, we can use our definition of reduction to im-
plement a simulator that executes the DNA molecules
directly. This will allow us to manually progress
through the simulation step by step, observing how
the molecules interact with each other and change
their configurations over time. Such tools would be
useful for debugging the design of a particular set of
DNA molecules, since we can directly observe how the
molecule changes configuration as a result of a partic-

ular interaction, and then intervene during the debug-
ging cycle to try new molecular designs.

The last case study illustrated how we can translate
a set of chemical reactions to DNA molecules. Each re-
action was translated to populations of gate molecules
that needed to remain constant over time, which re-
quired excess molecules and pre-computation of equi-
librium conditions. Rather than translating chemical
reactions to DNA, it would be interesting to define an
alternative high-level language that still retains an ex-
plicit notion of a DNA molecule as a finite resource,
while abstracting away from individual domains in the
DNA sequence. An example of such a language is de-
scribed by Cardelli (2009), as a means of simplifying
the circuit design process.

As a proof of concept, we have implemented a pro-
totype compiler for the DNA strand displacement lan-
guage, which will be made available at (Phillips, 2009).
Essentially, the tool can be used to program a collec-
tion of DNA molecules and to check whether they con-
form to the syntax of the language. If not, an error is
raised. Otherwise, a text file is produced containing
the full set of molecules and reactions that are gen-
erated from the initial set of molecules. The gener-
ated reactions can then be simulated using standard
techniques. In the longer term we hope to extend
our language to further automate the process of de-
signing DNA circuits, by including a compilation step
that translates toehold and specificity domains to nu-
cleotide sequences. In this case the translation would
rely on a set of precomputed sequences that are suffi-
ciently distinct from each other and that do not exhibit
secondary structures, using appropriate DNA coding
of the regions (Kari et al., 2005; Zhang et al., 2007).
The ultimate goal as described by Yin et al. (2008)
is to be able to design and simulate arbitrarily com-
plex DNA circuits on a computer, and automatically
compile these to a corresponding set of nucleotide se-
quences, ready for synthesis.
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